Quantification of ergodicity in stochastic homogenization: Optimal bounds via spectral gap on Glauber dynamics
نویسندگان
چکیده
We study quantitatively the effective large-scale behavior of discrete elliptic equations on the lattice Z with random coefficients. The theory of stochastic homogenization relates the random, stationary, and ergodic field of coefficients with a deterministic matrix of effective coefficients. This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on the infinite-dimensional space of admissible coefficient fields. In this contribution we develop new quantitative methods for the corrector problem based on the assumption that ergodicity holds in the quantitative form of a Spectral Gap Estimate w. r. t. a Glauber dynamics on coefficient fields —as it is the case for independent and identically distributed coefficients. As a main result we prove an optimal decay in time of the semigroup associated with the corrector problem (i. e. of the generator of the process called “random environment as seen from the particle”). As a corollary we recover existence of stationary correctors (in dimensions d > 2) and prove new optimal estimates for regularized versions of the corrector (in dimensions d ≥ 2). We also give a self-contained proof of a new estimate on the gradient of the parabolic, variable-coefficient Green’s function, which is a crucial analytic ingredient in our approach. As an application of these results, we prove the first (and optimal) estimates for the approximation of the homogenized coefficients by the popular periodization method in case of independent and identically distributed coefficients.
منابع مشابه
Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics — long version
We study the effective large-scale behavior of discrete elliptic equations on the lattice Z with random coefficients. The theory of stochastic homogenization relates the random but stationary field of coefficients with a deterministic matrix of effective coefficients. This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on the infinite-dimensional...
متن کاملStability of Interfaces and Stochastic Dynamics in the Regime of Partial Wetting
The goal of this paper is twofold. First, assuming strict convexity of the surface tension, we derive a stability property with respect to the Hausdorff distance of a coarse grained representation of the interface between the two pure phases of the Ising model. This improves the L description of phase segregation. zUsing this result and an additional assumption on mixing properties of the under...
متن کاملLower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s B. Goldys and B. Maslowski
A formula for the transition density of a Markov process defined by an infinitedimensional stochastic equation is given in terms of the Ornstein Uhlenbeck Bridge, and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V-ergodicity are proven under suitable conditions for a large class of equations. The method allows us to find computable bou...
متن کاملLower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s
A formula for the transition density of a Markov process defined by an infinite-dimensional stochastic equation is given in terms of the Ornstein–Uhlenbeck bridge and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V ergodicity are proved for a large class of equations. We also provide computable bounds on the convergence rates and the sp...
متن کاملSpectral gap estimates for interacting particle systems via a Bakry & Emery – type approach
We develop a general technique, based on the Bakry–Emery approach, to estimate spectral gaps of a class of Markov operator. We apply this technique to various interacting particle systems. In particular, we give a simple and short proof of the diffusive scaling of the spectral gap of the Kawasaki model at high temperature. Similar results are derived for Kawasaki-type dynamics in the lattice wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014